|
|
|
Kontakt | Haftungsausschluss |
|
|
|
|
|
Daten/Statistiken | Atomenergie, Kernenergie, Atomstrom, Atomkraft | 2011 |
Atomkraft-Zustimmung-2005-2011 10.12.11 (370) |
FR-Grafik: Zustimmung zur Atomkraft: Vergleich 2005 mit 2011 Weltweit hat die Zustimmung zur Atomenergie seit der Atomkatastrophe in Fukushima im März 2011 deutlich nachgelassen. In der Umfrage (Diagramm links) wurde allerdings nicht nach dem Weiterbetrieb laufender Kernreaktoren sondern nach dem Neubau gefragt: "Ich stimme zu, dass Kernkraft relativ sicher und eine wichtige Energiequelle ist, es sollten neue Kraftwerke gebaut werden." Zustimmung zu dieser Aussage in den Jahren 2005|2011, Angabe in %, ca.Werte durch Ablesen, Staaten nach ISO-3166: US 40|39 GB 34|38 IN 33|23 MX 32|18 FR 26|16 ID 33|13 RU 22|9 DE 22|7 JP 21|6. In den USA erreichte die Zustimmung einen Spitzenwert von 40 % und ist nahezu gleich geblieben, in GB ist sie sogar gestiegen, in allen anderen Ländern dagegen gefallen, besonders drastisch in ID, RU, DE und JP. Die Grafik ist abgedruckt im Artikel: 40 neue Atomkraftwerke [FR 10.12.11, S.14]
|
|
Atommüll-Endlager 11.11.11 (353) |
FR-Grafik: Mögliche Standorte für hochradioaktiven Atommüll In der Deutschland-Karte sind mögliche Standorte für hochradioaktiven Atommüll nach 2 Kategorien eingefärbt: Salzstöcke (rot) und Tongestein (gelb). Bei den Salzstöcken werden 5 Standorte in Niedersachsen ausgewiesen: Neben Gorleben, der bisher aus politischen Gründen einzige Standort, der näher erkundet und teilweise schon ausgebaut wurde, werden noch Waddekath, Gütze Sumte, Zwischenahn und Wahn benannt. Neben Salzstöcken sind auch Tonstein-Formationen geeignet, die ebenfalls in Norddeutschland vorkommen, aber auch am Bodensee und in der Region bei Ulm. Die Schweiz hat sich bereits auf die Tonstein-Formation am Bodensee festgelegt. Prinzipiell können auch Granit-Formationen geeignet sein, z.B. wollen Schweden und Finnland in Granit einlagern. Die Granit-Formationen in Deutschland könnten jedoch zu zerklüftet sein, um eine Langzeitstabilität über 1 Millionen Jahre - so die offizielle Vorgabe - zu gewährleisten. Die Grafik ist abgedruckt im Artikel: Jenseits von Gorleben [FR 11.11.11, S.2] | Kontext
|
|
Atomkraftwerke-D 12.05.11 (337) |
dpa-Globus : Laufzeitverlängerung der 17 Atomkraftwerke in Deutschland In der Deutschlandkarte sind die Standorte der insgesamt 34 Kernreaktoren (17 stillgelegte + 17 aktive) markiert und nach 3 Kategorien eingefärbt: rot: in Betrieb 9: Brokdorf, Emsland, Grohnde, Grafenrheinfeld, Philippsburg 2, Neckarwestheim 2, Grundremmingen B/C, Isar 1. gelb: vorübergehend abgeschaltet 8 : Brunsbüttel, Krümmel, Unterweser, Biblis A/B, Phillipsburg 1, Neckarwestheim 1, Isar 1 grau: außer Betrieb bzw. in Stilllegung 17: Stade, Greifswald 1-5; Rheinsberg; Lingen; Hamm-Uentrop; Würgassen; Jülich; Mülheim-Kärlich; Kahl; Obrigheim; Karlsruhe I/II; Grundremmingen A. Bei jedem Reaktor sind notiert: Jahr der Inbetriebnahme; Leistung in MW; bei den stillgelegten zusätzlich das Endjahr. => Großansicht: Bezug Großansicht: Galerie
|
|
Stromkosten-Vergleich 05.05.11 (334) |
dpa-Globus : Was Strom wirklich kostet Die üblichen Strompreise, die sich an der Strombörse EEX durch den Stromhandel bilden, spiegeln nicht im vollen Umfang die Kosten wieder, die insgesamt unter Einbeziehung der sog."externen Kosten" (u.a. staatliche Förderung; Treibhausgase, sonstige Umweltschäden) entstehen. Für diese "wirklichen" Stromkosten ergeben sich aus einer FÖS-Studie im Auftrag von Greenpeace-Energy folgende Entstehungspreise (in Ct/kWh): Wasserkraft 6,5; Onshore-Windstrom 7,6; Braunkohle 12,1; Steinkohle 12,1; Atomstrom 12,8*; Photovoltaik-Strom 46,5. * Beim Atomstrom bleiben die Kosten eines Super-GAUs bzw. entsprechend erhöhte Versicherungsprämien (bis zu 270 Ct/kWh: s. Grafik in taz 06.11.10) ebenso unberücksichtigt wie die Kosten für die Endlagerung von Atommüll, da sie nicht hinreichend verlässlich geschätzt werden können. Wie beim UBA werden daher behelfsweise die externen Kosten des schlechtesten fossilen Brennstoffs, der Braunkohle, angesetzt. => Großansicht: Bezug
|
|
Atomanlagen-F 26.04.11 (330) |
Sortir du nucléaire: Landkarte der Atomanlagen in Frankreich Die französische Organisation "Sortir du nucléaire" stellt eine Landkarte online und zum Download bereit, in der die Standorte der zahlreichen Atomanlagen in Frankreich mittels kleiner Symbole (Anzahl) markiert sind : aktive (58) und endgültig stillgelegte (9) Atomreaktoren, Reste des Uranabbaus (ca.20), Herstellung/ Wiederaufbereitung von Brennstäben (6); Lagerung radioaktiver Abfälle (ca.40); militärische atomare Einrichtungen (ca.30); Atomforschungseinrichtungen (6); Bestrahlungseinrichtungen (6), sonstige (6). In der Online-Version können die Atomanlagen interaktiv ausgewählt werden. Aus deutscher Sicht besonders problematisch sind die Atomanlagen an der Ostgrenze Frankreichs, darunter 3 Atomkraftwerke mit zusammen 8 aktiven Reaktoren in gefährlich geringer Distanz zu Großstädten (Auswahl mit Entfernung in km) und Ballungsräumen in Deutschland: Fessenheim: Freiburg 25, Karlsruhe 130, Stuttgart 150; Cattenom: Trier 40, Saarbrücken 50; Mainz 150; Karlsruhe 160; Köln 170; Frankfurt 190; Dortmund: 240; Chooz: Aachen 110; Köln 175; Dortmund 240, Mainz 240 km.
|
|
Tschernobyl-Strahlung 26.04.11 (327) |
FR-Grafik: Kontamination des Bodens durch Tschernobyl-Strahlung Am 26.4.1986 geriet Block 4 des Atomkraftwerks Tschernobyl in Brand und explodierte. Die Wucht der Explosion und die aufsteigende Hitze transportierte radioaktive Substanzen in enormer Menge mehrere Kilometer hoch bis in die Atmosphäre, wo Winde die Radioaktivität über weite Teile Europas verteilten. In der Europakarte sind die Regionen nach Grad der radioaktiven Kontamination am Boden durch Cäsium 137 in 7 Stufen unterschiedlich eingefärbt (Messwerte von 1986 in in Kilo-Becquerel pro Quadratmeter). Besonders hoch war die Kontamination im Kernbereich um Tschernobyl und an einigen sog. Hotspots im Nordosten im Grenzgebiet Weissrussland - Russland. Selbst im fernen Schweden und Norwegen war die Radioaktivität regional hoch, ebenso in Österreich. Auch Süddeutschland war stärker betroffen. Außerdem sind in der Europakarte die Standorte von Atomkraftwerken mit der Anzahl der Reaktoren (differenziert nach: im Bau, in Betrieb, stillgelegt) eingetragen. Die Grafik (pdf; 2,7 MB) ist eingelinkt im Artikel: Alle starrten auf diese Wolke [FR 26.04.11]
|
|
Tschernobyl 21.04.11 (324) |
dpa-Globus : Neue Schutzhülle in Tschernobyl Am 26.4.1986 geriet der mit Grafit moderierte Reaktor IV des Kernkraftwerks Tschernobyl in Brand und explodierte schließlich. Durch die enorme Hitze entstand ein starker Auftrieb, der die Radioaktivität mehrere Kilometer hoch in die Atmosphäre schleuderte, wo Winde sie weiträumig über ganz Europa verteilten. Um die starke radioaktive Strahlung aus dem havarierten Reaktor einzudämmen, wurde er in aller Eile mit einer Betonhülle (Sarkophag) umgeben, wobei über 30 Helfer in den ersten 60 Tagen an Verstrahlung starben. Da der Sarkophag inzwischen nach 25 Jahren marode und einsturzgefährdet ist, soll eine neue Schutzhülle über die alte gebaut werden soll. Dieser Sarkophag II hat die Form eines Halbzylinders mit 110 m Höhe und 164 m Länge. Nachdem eine Geberkonferenz der EU-Staaten am 19.4.11 zwar nur 550 von erwarteten 740 Mio Euro bereitgestellt hat, soll das Großprojekt, dessen Kosten auf mindestens 1,6 Mrd. Euro geschätzt werden, nun endlich gestartet und bis 2015 abgeschlossen werden. Der neue Sarkophag soll mindestens 100 Jahre halten. Die Grafik zeigt in einer schematischen Darstellung, wie der Sarkophag II zunächst aus Sicherheitsgründen hinreichend weit entfernt vom havarierten Reaktor erstellt und dann auf Schienen über den Reaktor gefahren wird. => Großansicht: Bezug Großansicht: Galerie
|
|
Tschernobyl 15.04.11 (322) |
dpa-Globus : Die Katastrophe von Tschernobyl Am 26.4.1986 geriet der Reaktor IV des Kernkraftwerks Tschernobyl im Verlaufe eines Tests (Simulation eines vollständigen Stromausfalls) außer Kontrolle. Das Grafit, mit dem die Kettenreaktion im Reaktorkern moderiert wurde, geriet in Brand und erzeugte eine so große Hitze, dass der Reaktor explodierte, wobei der Reaktorkern und die Schutzhülle komplett zerstört wurden. Durch die aufsteigende heiße Luft wurde Radioaktivität im gewaltigen Umfang von mehren Trillionen (1018) Becquerel in große Höhen transportiert, wo es mit den Winden über Ländergrenzen hinweg weiträumig bis nach Nord-, Mittel- und Westeuropa verteilt wurde. In Deutschland ist die Radioaktivität noch heute nach 25 Jahren in manchen Pilzen und - durch Anreicherung in der Nahrungskette - z.B. in Wildschweinfleisch regional (besonders in Süddeutschland) so stark, dass sie zum Verzehr ungeeignet sind.Unmittelbar nach der Katastrophe starben mehrere Aufräumarbeiter an Strahlenkrankheit. Die Gesamtzahl von Toten durch die Verstrahlung wird auf 4.000 (IAEO) bis über 1,4 Millionen weltweit geschätzt. => Großansicht: Bezug Großansicht: Galerie
|
|
AKW-Grenzgebiet-D 14.04.11 (329) |
FR-Grafik: Atomkraftwerke (AKW) im Grenzgebiet zu Deutschland In der Landkarte sind 12 AKW-Standorte (mit insgesamt 24 Reaktoren) im nahen Ausland zu Deutschland als rote Punkte markiert. Aufgrund vieler Störfälle in der Vergangenheit gelten Fessenheim (F) und Leibstadt (CH) bei Freiburg sowie Temelin (CZ) bei Passau als besonders gefährlich. Ergänzend zur Grafik wird im folgenden hinter dem Standort das Nationalitätszeichen, die Anzahl der Reaktoren und die Entfernung in km zur nächsten Großstadt in Deutschland angegeben. Aachen: Tihange (B, 3, 65); Chooz (F, 2, 118); Doel (B, 4,141); Borssele (NL, 1, 179); Trier: Cattenom (F, 4, 48); Freiburg: Fessenheim (F, 2, 25); Leibstadt (CH, 1, 52); Beznau (CH, 2, 57); Gösgen (CH, 1, 70); Mühleberg (CH, 1, 125); Passau: Temelin (CZ, 2, 95); Dukovany (CZ, 4, 207). Hier wird jeweils nur die nächste Großstadt pro AKW-Standort angegeben. Im Umkreis von z.B.100 km oder 250 km zu einem AKW liegen meist sehr viel mehr Großstädte (s. Atomenergie-Daten > Ausland) Die Grafik ist abgedruckt im Artikel: Gefährliche Nähe. Deutschland ist umgeben von Atomkraftwerken. [FR 14.04.11]
|
|
AKW-Europa 14.04.11 (326) |
FR-Grafik: Atomkraftwerke in Europa In der Europakarte sind Länder ohne Atomkraftwerke (AKW) weiß gekennzeichnet: Irland, Portugal, Österreich, Norwegen, Polen, Estland, Lettland, Weissrussland, Moldawien, Griechenland und einige kleine Balkanländer. Bei den 18 Ländern mit AKW (grau unterlegt) sind die AKW-Standorte mit der Anzahl der dortigen Kernreaktoren (differenziert nach: im Bau, in Betrieb, stillgelegt) eingetragen. Spitzenreiter ist Frankreich (59 aktive Reaktoren), gefolgt von Russland (31), Großbritannien (19), Deutschland (17), Ukraine (15), Schweden (10). Die weiteren 12 Länder haben weniger als 10 Reaktoren. Die Grafik (pdf, 2,0 MB )ist eingelinkt unter: Atomkraftwerke in Europa [FR 14.04.11]
|
|
AKW-100-Umkreise 09.04.11 (331) |
Greenpeace: Atomkraftwerke in Deutschland mit 100 km Umkreis In der Landkarte Deutschlands sind die Standorte der 17 Atomkraftwerke (AKW) in Deutschland eingetragen sowie ihr jeweiliger 100-Kilometer-Umkreis (rot unterlegt). Bis auf den Raum Köln wird nahezu ganz Nord-,West- und Süddeutschland durch die Umkreise überdeckt. Werden zusätzlich die grenznahen AKW in Belgien (Tihange-Aachen 65 km), Frankreich (Fessenheim-Freiburg 25 km, Cattenom-Saarbrücken 58 km), Schweiz (Beznau, Gösgen, Leibstadt höchstens 70 km von Freiburg) und Tschechien (Temlin-Passau 95 km) einbezogen, liegen weite Teile Deutschlands - außer Regionen um Berlin in Ostdeutschland - im aktuen Gefahrenbereich (Evakuierungszone/ Sperrgebiet nach Super-GAU) mindestens eines noch aktiven Kernreaktors. Die Landkarte ist Teil des Extra-Posters "Abschalten" (pdf; 1,8 MB), Beilage im Greenpeace-Magazin Nr. 3 (Mai-Juni) 2011
|
|
AKW-30-80-250-Zone 08.04.11 (325) |
taz-Grafik: Atomkraftwerke in Ihrer Umgebung Unter Verwendung von google-maps bietet die taz eine interaktive Grafik an, bei der eine Stadt aus Deutschland eingegeben wird, zu der dann 3 verschiedene Umkreise und die dortigen Atomkraftwerke (AKW) auf der Landkarte eingetragen werden, wobei auch AKW aus dem nahen Ausland (NL, B, F, CH, CZ) einbezogen werden. Vor dem Hintergrund der Atomkatastrophe in Fukushima wird als kleinster Radius 30 km (20 km Sperrzone + 10 km Ausgehsperre) gewählt. Der mittlere Radius von 80 km entspricht der von der USA empfohlenden 50 Meilen-Zone, der große Radius von 250 km ist die Entfernung Fukushima-Tokio. Wird als Ort z.B. Düsseldorf eingegeben, ergibt sich: 30 km: keine AKW; 80 km: stillgelegte Atomanlagen in Jülich; 250 km: 9 aktive + 3 stillgelegte AKW. interaktive Grafik: AKW in Ihrer Umgebung [taz]
|
|
Atomausstieg 19.03.11 (318) |
FR-Grafik: Ausstieg aus der Atomkraft Schon bis 2015 kann der Atomausstieg gelingen, so das Ergebnis eines Szenarios von Prof. Olav Hohmeyer (Uni Flensburg, SRU-Mitglied). In einer Übergangsphase werden verstärkt 15 GW-Reserve- + 12 GW bereits geplanter Kapazität fossiler Kraftwerke eingesetzt, darunter möglichst viele CO2-arme Gaskraftwerke mit KWK. Der zwischenzeitlich erhöhte CO2-Ausstoß wird kompensiert durch eine CO2-freie Stromerzeugung ab 2030 vollständig aus Erneuerbaren Energien. Die Grafik ist eingelinkt im Artikel: Ausstieg aus der Atomkraft ist machbar [FR 19.03.11]
|
|
Kernkraftwerke-Japan 18.03.11 (317) |
dpa-Grafik: Kernkraftwerke in Japan In der Landkarte Japans sind die Küstenabschnitte an der Ostküste, die vom Tsunami getroffen wurden (Höhe der Welle 50 cm und mehr), blau markiert. Bis auf eine Region um Tokio und einige weit ins Land reichende Buchten sind nahezu alle Küstenabschnitte betroffen, besonders jene in der Nähe des Epizentrums des Erdbebens im Norden bei Sendai. Die meisten der 54 Reaktorblöcke (zusammen 49 GW) liegen an der nicht betroffenen Westküste am Japanischen Meer. Vom Erdbeben und Tsunami beschädigt wurden Reaktorblöcke an 4 Standorten an der Ostküste ab ca. 180 km nördlich von Tokio: - Fukushima-Daiichi: 6 Blöcke, schwere Schäden in Block 1 bis 4 - Fukushima-Daini: 4 Blöcke, Nebenkühlwasserpumpen überschwemmt - Tokai: 1 Block, 2 Generatoren und 2 Kühlpumpen ausgefallen - Onkawaga: 3 Blöcke, Brand in Turbinenhalle. Die Grafik ist eingelinkt im Artikel: Mittwochnachmittag spitzt sich die Lage in Fukushima zu [vdi 18.03.11]
|
|
Kernschmelze 18.03.11 (316) |
vdi-Grafik: Kernschmelze Bei dem havarierten Atomkraftwerk in Fukushima (Japan) handelt es sich vom Typ her um einen Siedewasserreaktor, der Wasser als Kühlmittel und zugleich als Moderator für die Kernspaltung in den Brennstäben nutzt. Im oberen Teil wird der Ablauf im Normalbetrieb gezeigt. Gekühles Wasser wird in den Reaktordruckbehälter gepumpt, wo es durch die Energie aus der Kernspaltung in den Brennstäben erhitzt wird und verdampft. Der Dampf wird aus dem Reaktordruckbehälter nach außen auf eine Dampfturbine geleitet, die einen Generator zur Stromerzeugung antreibt. Wird die Wärme aus dem Reaktorkern nicht genügend abgeführt, überhitzt er und die Brennstäbe schmelzen schließlich bei Temperaturen ab 1900 °C. Die Überreste der zerstörten Brennstäbe sammeln sich als extrem heiße hochradioaktive Masse am Boden des Druckbehälters, dessen Boden sie durchschmelzen können. In der Folge kann Radioaktivität in großem Umfang in die Umwelt gelangen. Die Grafik ist eingelinkt im Artikel: Knackpunkt war Ausfall der Notstromdiesel [vdi 18.03.11]
|
|
Strahlendosis-Japan 18.03.11 (315) |
GRS-Grafik: Gemessene Dosisleistung an ausgewählten Messpunkten beim Reaktor Fukushima Daiichi Die Grafik zeigt verschiedene Messwerte nach Angaben des AKW-Betreibers TEPCO im Kernkraftwerkskomplex Fukushima 1 (Daiichi) an 9 verschiedenen Messpunkten im Zeitraum vom 12.-18.3.11. Am 15.3. (Explosion/ Brand in Block 4) wurde eine Spitzenwert von 12 mSv/h (Milli-Sievert pro Stunde) gemessen, die 2.höchste Dosis am 16.3.(Freisetzung aus Block 2 und 3) mit 11 mSv. Zum Vergleich: Die Jahresgrenzdosis in Deutschland beträgt 20 mSv/a. Die Messpunkte liegen allerdings abseits der Orte maximaler Strahlung, die nach anderen Angaben Spitzenwerte über 1000 mSv/h aufwiesen und über längere Phasen 400 mSv/h erreichten in Bereichen, wo auch Personal tätig war. Die Grafik ist eingelinkt in der GRS-Infosseite zu den havarierten Reaktoren in Japan.
|
|
Stromlast 17.03.11 (314) |
EEX-Grafik: Stromlastverlauf in Deutschland Die Transparenzplattform der Strombörse EEX in Leipzig zeigt täglich den Verlauf der deutschlandweiten Stromlast (nachgefragte Stromleistung). Die tatsächliche Produktion wird mit der geplanten verglichen und laufend aktualisiert, wobei der Beitrag konventioneller Kraftwerke sowie Wind- und Solarkraft getrennt dargestellt werden. In etwa ergeben sich folgende Bandbreiten, die allerdings jahreszeitlich und wetterbedingt varrieren können: Spitzenlast: 60-70 GW; Grundlast: 30-40 GW; Wind: 0-20 GW; Solar: 0-12 GW. Der Beitrag der Solarenergie (Photovoltaik) ist in der Jahressumme im Vergleich zum Windstrom noch gering, die eingespeiste Leistung überschreitet jedoch an sonnenreichen Tagen während der Mittagsstunden schon die 10 GW-Marke. Die Lastverlauf wird laufend aktualisiert: Transparenzplattform der EEX
|
|
Atomkraft-D 16.03.11 (321) |
Spiegel-Grafik: Atomkraft in Deutschland In der Deutschlandkarte sind die Atomkraftwerke (AKW) nach 3 Kategorien mittels kleiner Meiler-Symbole markiert: In Stilllegung bzw. Stilllegung beschlossen (schwarz); in Betrieb (gelb); durch das Moratorium vorerst abgeschaltet (orange). Durch Klick auf den jeweiligen Standort können Detail-Infos zum AKW abgerufen werden: Reaktortyp; Nennleistung; Jahr der Aufnahme des Leistungsbetriebs; Datum außer Betrieb; Datum der begonnenen Stilllegung; Betreiber; Standort; Bild des AKW. Über weitere Menü-Button können folgende Infos aktiviert werden: Landkarte der Erdbebenzonen mit dortigen AKW-Standorten nach 3 Kategorien gefärbt bzgl. der Intensität zu erwartender Erschütterungen; Funktionsweise der Kernspaltung und das Funktionsschema von Leichtwasserreaktoren: Siedewasserreaktor und Druckwasserreaktor. Interaktive Grafik: Atomkraft in Deutschland [spiegel.de 16.03.11]
|
|
AKW-Weltkarte 15.03.11 (320) |
FR-Weltkarte: Länder, die Atomenergie erzeugen. In der Weltkarte sind Staaten, die Atomenergie erzeugen, grau eingefärbt, Staaten ohne Atomenergie sind weiß (Detail-Daten: siehe Globus 2311). Die Standorte von Atomkraftwerken (AKW) sind als rote Punkte marktiert. Diese Darstellung macht deutlich, wo sich AKW häufen: Europa, USA: an der Ost- und Westküste und bei den großen Seen; Japan und Südkorea. Die Weltkarte ist abgedruckt (bisher nicht online) auf S. 10/11 [FR 15.03.11]
|
|
Radioaktiviät-GAU-Biblis 15.03.11 (313) |
FR-Grafik: Ausbreitung der Radioaktiviät nach einem schweren Reaktorunfall im AKW Biblis B Bei jeder komplexen Technologie besteht ein Restrisiko, dass sie versagt, so auch bei Atomkraftwerken (AKW). Falls es z.B. im Kernreaktor Biblis B bei Frankfurt a.M. zum Super-GAU und in der Folge zu einem großvolumigen Austritt von Radioaktivität käme, würde sich die radioaktive Wolke mit den vorherrschenden Westwinden bis weit über Berlin hinweg nach Osten ausbreiten. Mit zunehmender Verteilung über die Fläche nimmt die Konzentration der Radioaktivität ab. Sie wird in der Grafik nach 7 Stufen gefärbt dargestellt, gemessen an der Bodenkontamination in Kilo-Becquerel (kBq) pro Quadratmeter von dunkelrot (1480, obligatorische Umsiedlung) über gelb (empfohlende Umsiedlung) bis blassgrün (1, Grenze der radioaktiven Verbreitung). Die Grafik ist abgedruckt (bisher nicht online) im Artikel: Haben Sie es kapiert ? [FR 15.03.11]
|
|
radioaktive-Wolke-Japan 15.03.11 (312) |
FR-Grafik: Mögliche Ausbreitung der radioaktive Wolke von Japan Bei immer mehr Atomreaktoren an der Ostküste Japans gerät der Havarieverlauf zunehmend außer Kontrolle und es finden vermutlich schon Kernschmelzen statt. Schlimmstenfalls gerät Radioaktivität in erheblichem Ausmaß in die Umwelt und wird über Winde mehr oder weniger weiträumig verteilt. Bei den in der dortigen Region vorherrschenden Westwinden könnte sich die radioaktive Wolke über den Pazifik über 6 bis 10 Tage hinweg bis nach Nordamerika ausbreiten, wobei die Konzentration der Radioaktivität mit zunehmender Entfernung durch Vergrößerung der betrofffenen Fläche abnimmt. Die gesundheitlichen Folgen (Krebsgefahr, Genschäden) für die dann betroffenen Regionen könnten gravierend sein. Die Grafik ist eingelinkt im Artikel: Szenarien des GAU [FR 15.03.11]
|
|
Kernkraftwerke-Japan 14.03.11 (310) |
FAZ-Grafik: Die betroffenen Kernkraftwerke in Japan In der Landkarte Japans sind die Orte der Kernkraftwerke markiert, deren Kühlsysteme durch das Seebeben mit Tsunami am 11.3.11 beschädigt wurden und bei denen teils die Gefahr besteht, dass in Folge einer Kernschmelze Radioaktivität im großen Umfang in die Umwelt austritt. Interaktiv können aktuelle Detailinfos zu den Kraftwerksstandorten Fukushima 1 (3 Reaktoren), Fukushima 2 (4 Reaktoren), Tokaj (1 Reaktor) und Onagawa (3 Reaktoren) abgerufen werden, für die offiziell der atomare Notstand ausgerufen wurde. Die Grafik ist eingelinkt im Beitrag: Die betroffenen Kernkraftwerke [faz.net 14.03.11]
|
|
Erdbeben-Tsunami-Japan 14.03.11 (308) |
FR-Grafik: Erdbeben- und Tsunami-Katastrophe in Japan In die Landkarte (links) ist die vom Tsunami heimgesuchte Pazifikküste als rote Linie sowie die Standorte der 54 Atomkraftwerke (AKW) markiert. Eine Detailkarte (rechts) informiert über die besonders betroffene Region von Tokio bis zum Epizentrum des Erdbebens östlich von Sendai im Pazifik. Die havarierten AKW an 3 Standorten sind über rote Turmsymbole gekennzeichnet. Die Karte informiert außerdem über die Höhe der Tsunamiwelle und die Zahl der zerstörten Gebäude an verschiedenen Orten der Pazifikküste jeweils in 3 Kategorien. Rote Punkte markieren die Orte von zahlreichen Nachbeben ab Stärke 5,0. Die Grafik ist abgedruckt (nicht online) im Artikel: Die Katastrophe [FR 14.03.11, S.2]
|
|
Reaktorhavarien-Japan 14.03.11 (307) |
FR-Grafik: Reaktorhavarie im Atomkraftwerk Fukushima1 in Japan Der obere Teil der Infografik zeigt die Lage des Atomkraftwerks direkt am Pazifik, der Grund dafür, dass das Kühlsystem des Reaktor durch den Tsuami am 11.3.11 zerstört wurde. Anhand eines Querschnitts durch den Reaktor wird der weitere Ablauf der Havarie beschrieben. Durch unzureichende Notkühlung überhitzt sich der Reaktorkern, wodurch Wasserstoffgas. Infolge des hohen Drucks entweicht der Wasserstoff in das umgebende Reaktorgehäuse und explodiert schließlich, wodurch das Dach des Gebäudes weggesprengt wird und Teile der Anlage zerstört werden. Im Reaktorkern ist vermutlich eine Kernschmelze im Gang, bei der die Brennstäbe zerstört werden und sich das radioaktive Material aus ihnen am Boden in einer sehr heißen Schmelzmasse sammelt. Schlimmstenfalls kann sie die Stahlhülle des Reaktorkerns zerstören und explosionsartig in die Umgebung entweichen oder in den Untergrund eindringen. Die Grafik ist abgedruckt (nicht online) im Artikel: Die Katastrophe [FR 14.03.11, S.3]
|
|
erstellt: 23.11.24/ zgh | Atomenergie, Kernenergie, Atomstrom, Atomkraft | 2011 |
|
||||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
Kontakt | über uns | Impressum | Haftungsausschluss | Copyright © 1999 - 2024 Agenda 21 Treffpunkt |